VIII Non-characterizing Surgeries

here are two natural questions:

$$I) \text{ For a fixed } n, \text{ are there infinitely many knots} \\ K_{1,1}K_{2,1} \dots, \text{ such that } S^3_{K_1}(n) \stackrel{n}{=} S^3_{K_1}(n) ?$$

$$I) \text{ For a fixed } n, \text{ are there infinitely many knots} \\ K_{1,1}K_{2,1} \dots \text{ such that } X_{K_1}(n) \stackrel{n}{=} X_{K_2}(n) ?$$

$$recall \text{ this is the 4-manifold} \\ \text{ Clearly Yes to II} \stackrel{n}{=} \text{Yes to I} \stackrel{n}{=} \text{Yes to I} \stackrel{n}{=} \text{ call this the n-trace of the knot} \\ (\text{ since } \Im X_{K_1}(n) = S^3_{K_1}(n)) \qquad \text{ call this the n-trace of the knot} \end{cases}$$

A. Annulus Twists

We will see the answer to both questions is Yes We start with a construction called annulus twists

lemma 1: Let $A \subset M^3$ be an embedded annulus with boundary $K_1 \cup K_2$ Suppose F is the framing on K_i coming from AThen MK, UK2 (7 + 1/4, 7 - 1/4) is diffeomorphic to M

Proof: for n=1, note M_{K, UK2} (7+1,7-1) is the some manifold as the one obtained by cutting M along A and regliging by a negative Dehn twist on K, and positive Delin twist along K₂ (see Lemma I.6)

but of course this diffeomorphism of A is isotopic to the identity and so yields M for larger n note that it you take a copies of Ki pushed off with framing I then 'I Dehn surgery on all of them is the same as 7= 1/ Dehn surgery on Ri exercise: Check this

Second proof: there is some Dehn surgery presentation for M and in there we see A

exercise: prove the general in case III

let Z = A U I-handle Cannulus so that I has one boundary Component

consider an inimersion P: I -> M such that · \$1 is an embedding • \$ I-handle 1 int A are ribbon singularities ribbon Singularity

this is called an <u>annulus presentation</u> or <u>band presentation</u> for the knot $K = \Phi(\partial \Sigma)$

let A'be a subannulus of A st. P(int A') contains all the ribbon singularities and set $\partial A' = K_1 \cup K_2$ with framing $\overline{\mathcal{F}}$ communing from A'from the lemma above $M_{K_1 \cup K_2}(\overline{\mathcal{F}} + \frac{L}{n}, \overline{\mathcal{F}} - \frac{L}{n}) \cong M$

but what happens to K?

before you cancel the surgeries on K, and Kz in the proof above slide K over K, or Kz at the end points of the ribbon singularity

<u>example</u>:

this is clearly isotopic to the identity

use isotopy to give explicite diffeom.
from
$$M_{K, UK_2}(9 + l_{H}, 7 - \frac{1}{2})$$
 to M
see where K goes!

define
$$A^{n}(K) = image of K$$
 under diffeomorphism
 $M_{K_{i}} \cup K_{2} (\mathcal{F} + \frac{L}{n}, \mathcal{F} - \frac{L}{n}) \cong M$
we say $A^{n}(K)$ is obtained from K by an
annulus twist

let
$$\mathcal{J}'$$
 be the framing on K (and $A^{*}(K)$) induced by $\Phi(\Sigma)$
exercise: compute \mathcal{F}' if $M=S^{3}$

$$\frac{Th^{m}Z(Osoinach ZOOG)}{M_{K}(\mathcal{F}') \cong M_{A^{n}(K)}(\mathcal{F}')} \text{ for all } n$$

$$\frac{Proof}{100}: \text{ consider } \Sigma' = \Sigma - A' \text{ (note: pair of -pants)}$$
note that in $M_{K}(F')$ you glued a mendional disk
to $\Sigma' \subset M$ - ubbd(K) along longitude for ubbd(K)
so $\Sigma' \cup \text{ mendional disk}$ is an annalius \overline{A} in $M_{K}(F')$
note $K_{1} \cup K_{2} = \partial \overline{A}$ and the froming \overline{F} on K_{1}, K_{2} from
 $A' = \text{froming on } K_{1} \cup K_{2} \text{ from } \overline{A}$
: by lemma 1, $\overline{F} + Y_{n}, \overline{F} - Y_{n}$ surgery on $K_{1} \cup K_{2}$
 $in M_{K}(\overline{F}')$ yields $M_{K}(\overline{F}')$

but I could do surgery on the K, UK2 First to get A"(K) in M and then 7' surgery on A"(K) to get $M_{K}(7')$

60r 3: If K is as in example above, then A"(K) different for each n, so] as 'ly many knots in 53 on which o-surgery yields the same 3-manifold

Proof: KUK, UK2 (2 of pair-of-pants) is hyperbolic
(USE Snaply a computer program good at dealing
with hyperbolic manifolds)
thus by Thurston's hyperbolic Dehn surgery theorem
for large n, Aⁿ(K) is also hyperbolic and as

$$n \rightarrow \infty$$
 its volume increases to that of KUK, UK2
so they are all different!

<u>Remark</u>: If you know about offier, easier, knot invariants you might try to show the Alexander polynomials or signatures of the $A^{n}l(K)$ are different but since $S^{3}_{A^{n}l(K)}(o) \cong S^{3}_{lk}(o)$ one can check that their Alexander modules are the same (recall these are determined by $\pi_{i}(S^{3}-K)$ how does this relate to $\pi_{i}(S^{3}_{lk}(o))$?). So the Alexander polynomials and signatures are the same. given an annulus presentation (A, 1-handle) of a knot K we say it is <u>special</u> if i) $A = a \pm 1$ twisted band about an unknot bounding disk D, and z) the 1-handle is disjoint from D.

note: our example above is special

$$\frac{Th^{m} \Psi (Abe - Jong - Omae - Takeuch, 2013)}{If K has a special and us presentation then
$$X_{k}(0) \cong X_{A^{n}(K)}(0)$$
for all n$$

the proof relies on a result of Akbulut
lemma 5 (Akbulut, 1977):
let K, K' be knots in
$$\partial B^{4}$$
 with a diffeomorphism
 $g: \partial X_{K}(n) \rightarrow \partial X_{K}(n)$
and let μ be a meridian of K. Suppose
(i) if μ is 0-framed, then $g(\mu)$ is a 0-framed unknot
in the Kirby diagram representing $X_{K}(n)$ and
(2) the Kirby diagram $X_{K'}(n)$ uh' represents B^{4} , where h' is
the 1-handle represented by a dotted $g(\mu)$
then g extends to a diffeomorphism $X_{K}(n) \rightarrow X_{K'}(n)$

Proof: note:
$$\mu$$
 is the boundary of the co-core of the
2-handle in $X_k(n)$
thus it bounds a disk D, the co-core of the handle
recall removing a nobul of the co-core is the same as
removing the handle
so $X_k(n) \setminus v(D) \cong B^4$
by hypothesis $g(\mu)$ bounds a disk D' in $X_{k'}(n)$
and $X_{k'}(n) \setminus v(D) \cong B^4$
recall, $v(D) = D \times D^2$ and this framing induces the
 $D - framing on \exists D^2 \subset \exists X_k(n)$
similarly for $v(D')$
So a

$$nbhd (\Im_{K}(n) \cup D) = [(\Im_{K}(n)) \times [-1,0]] \cup 2-handle attached to \mu u framing 0$$

and

$$nbhd (\mathcal{Y}_{K'}(n) \cup \mathcal{D}') = [(\mathcal{Y}_{K'}(n)) \times [-1,0]] \cup \mathbb{Z}^{-handle} attached$$

 $to g(n) \longrightarrow framming 0$

thus g can be extended to a diffeomorphism G from a neighborhood N of
$$(\partial X_{K}(n)) \cup D$$
 to a neighborhood N' of $(\partial X_{K'}(n)) \cup D'$

now
$$\overline{X_k(n)} - N \cong B^4$$
 and $\overline{X_{k'}(n)} - N' \cong B^4$
and $G|_{\partial(X_k(n) - N)} : \partial B^4 \longrightarrow \partial B^4$

thus G extends over
$$B^{4}$$
 to give a diffeom.
from $X_{K}(n)$ to $X_{K'}(n)$

Proof of Th = 4:

Since K has a special annulus presentation it books like K *t* 1 band disjoint from D and ribbon double 0 pB only in left part of annulus

Now we have the meridian A to K

What about for
$$n \pm 0$$
?
let K have a special annulus presentation
we can write $A^{k}(K)$ as

(number of bands in box depends on k)

now denote by An (K) the knot

Theorem 6 (Abe, long, Lucke, Osoinach 2015): for any n and all k, $X_{k}(n) \cong X_{A_{n}^{k}(K)}(n)$ in particular $S_k^3(n) \cong S_k^3(n)$ (a)

we rewrite the above as

performing an annulus twist on this picture gives a diffeom manifold given by

the proof that
$$X_{K}(n) \cong X_{A_{n}^{k}(K)}(n)$$
 is now exactly
as in the proof of $T_{h} \cong 4$

6-7:

If K is as in example above, then An(K) different
for each k, so
$$\exists \infty' \mid y$$
 many knots in 5^3 on
which n-surgery yields the same 3-manifold
and have the same n-traces

Proof: for
$$n=0$$
, this is in corollary 3
for $n \neq 0$ Abe, long, Lucke, Osoinach show that
 $deg \bigwedge_{A_n^{h+1}(K)} (t) = deg \bigwedge_{A_n^h(K)} (t)$
Alexander polynomial.
we skip the proof as it is a bit for afield \mathbf{H}

B Dualizable Patterns

a pattern is an embedding
$$P: S' \rightarrow V$$
 where $V = S' \times D^2$
(we assume im $P \neq S' \times \{pt\}$)

given a knot K in 5^3 and a framing $\exists on K$ $\exists an embedding 1_{g}: V \to 5^3$ such that $1_{g}(V) = ubhd of K and$ $1_{g}(S' \times \{p\}) defines <math>\exists for any p \in \partial D^2$ the <u>satellite of K by P</u> is the hnot $1_{g} \circ P : S' \to S^3$ and denoted $P_{g}(K)$ (if $\exists = 0$, then just P(K))

o pattern $P: S' \rightarrow V = S' \times D^{\perp}$ is called <u>dualizable</u> if P(S') is not null-homologous and $\exists a$ pattern $P^*: S' \rightarrow V^* = S' \times D^2$ such that $\exists an$ orientation preserving diffeomorphism $f: [V - N(P(S))] \longrightarrow [V^* - N(P^*(S'))]$ (with $f(\lambda_V) \cong \lambda_{P^*}$, $f(\lambda_P) \cong \lambda_{V^*}$, $f(\mu_V) \cong -\mu_{P^*}$ (soforic where $\lambda_V = S' \times \{p\}$ $p \in \partial D^2$ $\lambda_P = unique aurve on <math>\partial N(P(S'))$ homologous to a positive multiple of λ_V in V - N(P(S'))

$$M_{V} = \{q\} \times \partial D^{2} \quad \text{any } q \in S'$$

$$M_{D} = \text{meridian to } P(s') \text{ on } \partial \mathcal{M}(P)$$

and similarly for
$$\lambda_{v^*}, M_{v^*}, M_{p^*}$$

exercise: Show if I an $f: [V \setminus N(P(s))] \longrightarrow [V^* \setminus N(P^*(s')]$ such
that $f(\lambda_p) = \lambda_{v^*}$ and $f(\mu_v) = -\mu_{p^*}$
then can isotop f so that $f(\lambda_v) = \lambda_{p^*}$ and $f(\mu_p) = -\mu_{v^*}$
What are dualizable patterns good for ?

Th # 8 (Brakes 1980):

IF P is a dualizable pattern with dual P^* , then there is a diffeomorphism $\phi: S^3_{P(U)}(0) \rightarrow S^3_{P^*(U)}(0)$ where U is the unknot

Proof: let
$$V_{p} = V - N(P(S))$$
 $\partial V_{p} = T, \cup T_{2} = \partial V$
and $V_{p*}^{*} = V^{*} - N(P^{*}(S))$ $\partial V_{p*}^{*} = T, ^{*} \cup T_{2}^{*} = \partial V^{*}$
note: $V(\lambda_{V}) \cong S^{3} \cong V^{*}(\lambda_{V*})$
now $S_{0}^{3}(P(U)) = V_{p}(\lambda_{p},\lambda_{V})$
Defini fill T_{1} by uslope λ_{P}
indeed note that since λ_{p} is homologous to some multiple
of λ_{V} in V_{p} , \exists a surface $\Xi' < V_{p}$ s.t. $\partial \Xi' = \lambda_{p} \cup n \lambda_{V}$
so $\Xi = \Xi' \cup n$ monidianal disks in the filling
torus $S' \times D^{2}$ for T_{2} is a Seifert surface
for $P(U)$
that is λ_{p} is the O framing on $P(U)$
Similarly $S_{0}^{3}(P^{*}(U)) = V_{p*}^{*}(\lambda_{p}, \lambda_{V})$
and we have the diffeomorphism
 $S_{0}^{3}(P(U)) = V_{p} \cup S' \times D^{2} \cup_{T_{2}} S' \times D^{2}$
 $\downarrow f \cup U$
 $S_{0}^{3}(P^{*}(U)) = V_{p*}^{*} \cup_{T_{2}} S' \times D^{2}$
 $\downarrow f \cup U$
 $S_{0}^{3}(P^{*}(U)) = V_{p*}^{*} \cup_{T_{2}} S' \times D^{2}$
 $\int_{0}^{3} (P^{*}(U)) = V_{p*}^{*} \cup_{T_{2}} S' \times D^{2}$
 $\downarrow f \cup U$
 $S_{0}^{3}(P^{*}(U)) = V_{p*}^{*} \cup_{T_{2}} S' \times D^{2}$
 $S_{0}^{3}(P^{*}(U)) = V_{p} = V_{p} \cup_{T_{2}} S' \times D^{2}$
 $\int_{0}^{3} (P^{*}(U)) = V_{p} = V_{p} \cup_{T_{2}} S' \times D^{2}$
 $S_{0}^{3}(P^{*}(U)) = V_{p} = V_{p} \cup_{T_{2}} S' \times D^{2}$
 $S' \otimes D^{2}$
 $S' \otimes D^{2} = V_{p} = V_{p} \cup_{T_{2}} S' \times D^{2}$

 $let \quad \mathcal{T}_{n}: S' \times D^{2} \rightarrow S' \times D^{2}: (\phi, (r, \varphi)) \longmapsto (\phi, (r, \varphi + n \phi))$

define (n(P) = T, P, this is a new pattern in V

 $\frac{Th^{p_2} 9 (Miller - Piccirillo 2018)}{[let P be a dualizable pattern with dual P*, then for any n \in \mathbb{Z}}$ $\int_{P(U)}^{3} (n) \cong \int_{(T_n(P))(U)}^{3} (n)$

Proof: exercise. very similar to prof of Th=8 OK great, but do dualizable patterns exist? to find them we set $\Gamma: 5' \times D^2 \rightarrow 5' \times 5^2: (x,y) \mapsto (x,e(y))$

where $e: D^2 \rightarrow 5^2$ maps D^2 to a number of north pole

f x: 5' > 5'x D2 then let 2 = Pox

Th=10 (Milley-Picirillo 2018): a pattern P in $5' \times D^2$ is dualizable $\Leftrightarrow \hat{P}$ is isotopic to $\hat{\lambda}_V$ in $5' \times 5^2$ $\frac{Proof}{T} \Rightarrow note \quad 5' \times 5^2 \setminus \mathcal{N}(\hat{P}) \quad is \quad diffeomorphic to \quad (5' \times D^2 \setminus \mathcal{N}(P))_{T}(\mu_{v})$ since P is dualizable with dual P^* , $\exists a diffeo. f:(V \setminus N(P)) \rightarrow (V^* \setminus N(P^*))$ sending My to -Mp* 50 (5'×D² \N(P))_{T2} (MV) is diffeomorphic to (5'×D² \N(P*))_T (-Mp*) but this is just a solid torus 50 P is a knot in 5'x 52 with solid torus complement.

e.
$$\partial N(P)$$
 is a the grand torus for $5^{1} \times 5^{2}$
(t is known (Wald Induson 19(8) that $5^{1} \times 5^{2}$ has a unique
Heregoard torus so $\partial N(P)$ is isotopic to a
noted of $\hat{\lambda}_{V}$ and thus \hat{P} is isotopic to $\hat{\gamma}_{P}$
(E) let $V^{*} = 5^{1} \times 5^{1} \times NP$
Since \hat{P} is isotopic to $\hat{\lambda}_{V} = 5^{1} \times \{p\}^{2}$ we know that V^{*} is a solid torus
so $\exists a diffeomorphism of f: V^{*} \rightarrow 5^{1} \times D^{2}$ such that
 $f(\hat{\lambda}_{P}) = 5^{1} \times \{p\}^{2} \Rightarrow \lambda_{V}$
note: $T: 5^{1} \times 5^{2} \Rightarrow 5^{1} \times 5^{2}$ (or $x) \mapsto (0, r_{V}(x))$, where $r_{0}: 5^{1} \rightarrow 5^{2}$
rotates $5^{2} \text{ by } 0$, changes framing on $\hat{\lambda}_{P}$
let $Q = \hat{\lambda}_{V} \subset V^{*}$ and $Z = (5^{1} \times 5^{2}) \setminus N(\hat{P} \cup \hat{\lambda}_{P})$
note: $V \cap N(P) \cong Z \cong V^{*} \cap N(\hat{\lambda}_{V})$
in the "trivial case" we see $M_{V} \hookrightarrow \mathcal{M}_{Q}$ and
 $M_{P} \leftrightarrow \hat{\lambda}_{V} \circ in$ these
diffeomorphisms
this is true wigeneral (see example below)
so P is dualizable with $P^{*} = f(Q) \subset 5^{1} \times D^{2}$

We now see the dual of P is $T_{i}(P)$ to do this we draw $\hat{\lambda}_{v}$ and \hat{P} together with $\hat{\lambda}_{p}$ (the transing on P) (dropping outer 5² from the picture)

 $T = I = S = dual (20) \leq with dual (1, then C_n(1)) = dual (20) = C_n(P^*)$ $(so for P the pattern above T_n(P)) has dual T_{trn}(P))$ $2 \text{ knots } K_0, K_1 = called <u>concordant</u> if there is an embedded
annolus <math>A \subset S^3 \times \{0,1\}$ s.t. $A \land S^3 \times \{1\} = K_1$. I = 0,1 $A k b u \cup t - K i = concordant$ $Th^{m} = I = (Miller - Piccirillo 2018):$ $\exists infinitely many pairs K_1, K' = that are not concordant$ $b u t S^3_K(0) \cong S^3_{K'}(0)$

<u>Proof</u>: given a knot $K \subset S^3$ let $\mathbb{Z}_2(K)$ be the 2-fold cover of S^3 branched over Kthat is consider the 2-fold cover of S^3_K corresponding to the subgroup $\ker(\pi_i(S^3_K) \to H_i(S^3_K) \to \mathbb{Z}_{2})$

EXErcise: If
$$K_{i}$$
 K' one concordant, then $\exists a$ compact \forall -manifold
 X st. $\exists X = -\overline{Z}_{2}(K) \cup \overline{Z}_{2}(K')$ and
 $H_{x}(X_{i}-\overline{Z}_{2}(K)) \equiv H_{x}(K, \overline{Z}_{x}(K)) \equiv O$ (X called homology cobordism)
let $K_{n} = (\overline{T}_{2k-1} J)(U)$ and $K_{n}' = (\overline{T}_{-3-ih} J)(U)$
where J u as above
from $Th \stackrel{d}{=} 8$ we know $S_{k_{n}}^{3}(o) \equiv S_{k_{n}}^{3}(o)$
to show K_{n} is not concordant to K_{n}' Miller and Piccirillo
compute $O_{2}svath$ and $Szabó's$ d -invariants
one can show $H_{x}(\overline{Z}_{2}(K_{n})) \cong H_{x}(\overline{Z}_{2}(K_{n}')) \cong H_{x}(S^{3})$
so the d-invariant of $\overline{Z}_{2}(K_{n})$ and $\overline{Z}_{2}(K_{n}')$
is a rational number and it is known that
then their d-invariants are the some
Millen-Piccirillo computed $d(\overline{Z}_{2}(K_{n}')) \equiv -Z < 0 \leq d(\overline{Z}_{x}(K_{n}))$

If $Q: S' \rightarrow V$ is a pattern, then let $J_Q: S' \neq D^2 \rightarrow V$ parameterize a nebd N(Q(S')) such that $J_Q(S' \neq \{p\}) \simeq \lambda_Q$

given another pattern
$$P: S \rightarrow V \cong S' \times D^2$$
 define the composition
 $P \circ Q = \int_Q \circ P$

Proof: we denote the solid torus in which a pattern R lives by
$$V_{R}$$

note: $V_{P \circ Q} \land N(P \circ Q) = (V_{Q} \land N(Q)) \cup (V_{P} \lor V(P))$
where $\lambda_{V_{P}}$ is identified with λ_{Q}
and $M_{V_{P}}$ \cdots M_{Q}
since P and Q are dualizable, we see
 $V_{Q \circ P} \land N(Q \circ P) \cong (V_{P} \lor N(P^{*})) \cup (V_{Q} \lor N(Q^{*}))$
where λ_{P} is identified with $\lambda_{V^{*}}$
and M_{P} with $-M_{V^{*}}$
but this is exactly $V_{Q^{*} \circ P^{*}} \land N(Q^{*} \circ P^{*})$
exercise: check diffeo sends $\lambda_{V_{P \circ Q}}$ to $\lambda_{Q^{*} \circ P^{*}}$
 $M_{P \circ Q}$ to $-M_{V_{Q^{*} \circ P^{*}}}$

evenuse: given
$$K \subset S^3$$
 we can get a pattern P_K
 $\downarrow K \downarrow \downarrow \downarrow P_K$
 $\downarrow Show P_K(K^1) = K \# K'$
 $\downarrow Show P_K$ is dualizable with dual P_K

Cor 13:

If P is a dualizable pattern and K a knot in $5^3_{,i}$ then $5^3_{P(K)}(0) \cong 5^3_{P(U) \# K}(0)$

Proof: Since Pr(U) = K we see PoPr(U) = P(K) $now (P \circ P_{k})^{*} = P_{k} \circ P^{*}$ so $P_{k} \circ P^{*}(U) = K \# P^{*}(U)$ the result follows from Th = 8

The 14 (Miller-Piccirillo 2018)

let K admit a special annulus presentation, and K' be obtained by an annulus twist Then there is a dualizable pattern P such that P(U) = K' and P*(U) = K

Proof: recall K' books like

let V = 53-nbhd (B) and P= K'CV

to see P is duditable we use The 10 and see P c s'xs2 is isotopic to s'x [pt]

P (5'x 5' is shown in the figure above it we do zno surgery on B

so P is dualizable with some dual P* now to see what P* is consider the homes $g: S^3_K(0) \rightarrow S^3_{K'}(0)$

 $50 \quad 5^{3} \setminus \mathcal{N}(\mathcal{K}) \cong 5^{3}_{\mathcal{K}(0)} \setminus \mathcal{N}(\mathcal{K}) \cong 5^{3}_{\mathcal{K}'}(0) \setminus \mathcal{N}(\mathcal{B})$

now $S_{k^{1}}^{3}(0) \setminus N(\beta)$ is the result of filling $(V \setminus N(P)) a \log \lambda_{p}$ which $(bq def^{a})$ is homeomorphic $(V^{*} \setminus N(P^{*}))_{T_{2}}(\lambda_{V^{*}})$ which in turn is $S^{3} \setminus N(P^{*}(\omega))$ but Cordon-Lueche showed a knot is determined by its complement, so K isotopic to $P^{*}(\omega)_{M}$

C. RGB Links

an RGB link is a 3-component link whose components are written R, G, B such that 1) BUR is isotopic to BUMB^C meridian to B 2) GUR is isotopic to GUMB^C meridian to G 3) [k(B,G)=0

by property 1) if we attach a 1-handle to B⁴ by putting a dot on R and attach a 0-framed 2-handle to B we get B⁴ the link G becomes a knot K_G in S³

do 3 indicated handle slides and cancel red and blue

by property 2) we also get KB in 53

by property 3) the O-framing on Band 6 goes to the O-framing on KB and KC

this proves Th=15 (Piccirillo 2019): _ $X_{K_{c}}(o) \cong X_{K_{g}}(o)$

exercise: Show if you attatch 2-handles to G, B with traning O and n respectively, and dot red, then you get K' and K' st. $X_{K_{R}^{n}}(n) \cong X_{K_{R}^{n}}(n)$

The [6 (Piccivillo 2019): H P is a dualizable pattern and P*is its dual them I on RGB link st. P(U) = KB and P*(U) = KG

now P(U) is

but $\partial(\mathbf{Q}) = 5^{1} \times 5^{2}$ so by Th = 10

The 17 (Piccirillo 2019):

Given an RGB link, then $\exists a \text{ dualizable pattern } P \text{ with dual } P^*$ Such that $K_G \cong P(U)$ and $K_B \cong P^*(U)$

slide B oven R (-r) times to get change in framing to be O note B and R bound disks if G intersects B's disk slide it "oren" red to get

nor G is in the form of P(U)one can do the same to get $B = P^*(U)$