VIII Non-characterizing Surgeries
here are two natural questions:
I) For a fixed n, are there infiniciely many knots

$$
K_{1}, K_{2}, \ldots, \text { such that } S_{K_{i}}^{3}(n) \cong S_{k_{j}}^{3}(n) \text { ? }
$$

II) For a fixed n, are there infinitely many knots

$$
K_{1}, K_{2}, \ldots \text { such that } X_{K_{i}}(n) \cong X_{K_{j}}(n) \text { ? }
$$

Clearly Yes to II) \Rightarrow Yes to I)
recall this is the 4 -manifold obtained from B^{4} by attaching a 2 -handle to K_{i} w/ framing'n (since $\left.\partial X_{k_{i}}(n)=s_{k_{i}}^{3}(n)\right)$ call this the n-trace of the knot
A. Annulus Twists

We will see the answer to both questions is Yes
We start with a construction called annulus twists
lemma 1:
let $A \subset M^{3}$ be an embedded annulus with boundary $K_{1} \cup K_{2}$
Suppose \mathcal{F} is the framing on K_{i} coming from A
Then $M_{K_{1} \cup K_{2}}\left(7+y_{1}, 7-1_{n}\right)$ is diffcomorphic to M
Proof: for $n=1$, note $M_{k_{1} \cup K_{2}}(7+1,7-1)$ is the some manifold as the one obtained by cutting M along A and regluing by a negative Delin twist on K_{1} and positive Dehn rust along K_{2} (see Lemma I.6)
but of course this diffeomorphism of A is isotopic to the identity and so yields M for largen n note that if you take n copies of k_{i} pushed off with framing F then ± 1 Dehn surgeny on all of them is the same as $7 \pm 1 / n$ Dehn sur gers on K_{i}
exenuse: Check this
Second proof: there is some Dehn surgery presentation for M and in there we see A

so our surgery picture for $n=1$ is

exercise: prove the general n case
let $\Sigma=A$ U1-handle so that \sum has one boundary $\uparrow_{\text {annulus }}$ component

consider an immersion $\phi: \Sigma \rightarrow M$ such that

- $\left.\phi\right|_{A}$ is an embedding
- $\phi l_{\text {t-handle }} I$ int A are ribbon sirigularitiés

this is called an annulus presentation or band presentation for the knot $k=\phi(\partial \Sigma)$
example:

let A^{\prime} be a subannulus of A st $\phi\left(\right.$ int $\left.A^{\prime}\right)$ contains all the ribbon singularities
and set $\partial A^{\prime}=K_{1} \cup K_{2}$ with framing 7 comming from A^{\prime}
from the lemma above $M_{k_{1} \cup k_{2}}\left(7+\frac{1}{n}, f-\frac{1}{n}\right) \cong M$
but what happens to K ?
before you cancel the surgeries on K_{1} and K_{2} in the proof above slide K over K_{1} or K_{2} at the end points of the ribbon singularity
example:

exencosé: understand this from the perspective of the first proof of lemma 1

Hint: we cut M along A and reglues by

this is cleanly isotopic to the identity
use isotopy to give explicite diffeom.
from $M_{K_{1} \cup K_{2}}\left(7+1 M_{1}, 7-\frac{1}{n}\right)$ to M
see where K goes!
define $A^{n}(K)=$ image of K under diffeomorphism

$$
M_{k_{1} \cup K_{2}}\left(f+\frac{1}{n}, f-\frac{1}{n}\right) \cong M
$$

we say $A^{n}(K)$ is obtained from K by an annulus twist
let \mathcal{F}^{\prime} be the framing on $K\left(\right.$ and $A^{n}((k))$ induced by $\phi(\Sigma)$
exercise: Compute 7^{\prime} if $M=s^{3}$
Th ${ }^{m} 2\left(O_{\text {spinach 2006): }}\right.$

$$
M_{K}\left(\exists^{\prime}\right) \cong M_{A^{n}(K)}\left(7^{\prime}\right) \text { for all } n
$$

Proof: consider $\Sigma^{\prime}=\Sigma-A^{\prime}$ (note: pair-of-pants) note that in $M_{k}\left(7^{\prime}\right)$ you glued a meridional disk to $\Sigma^{\prime} \subset M$-ubhd (K) along longitude for nbhd (K) so $\Sigma^{\prime} u$ mendicial dish is an annulus \vec{A} in $M_{K}\left(F^{\prime}\right)$ note $K_{1} \cup K_{2}=\partial \bar{A}$ and the framing f on K_{1}, K_{2} from $A^{\prime}=$ framing on $K_{1} \cup K_{2}$ from \bar{A}
\therefore by lemma 1, $\exists+4 n, \exists-1 / n$ surgery on $K_{1} \cup K_{2}$ in $M_{K}\left(F^{\prime}\right)$ yields $M_{k}\left(F^{\prime}\right)$
but I could do surgery on the $K_{1} \cup K_{2}$ first to get $A^{n}(R)$ in M and then 7^{\prime} surgery on $A^{n}(K)$ to get $M_{k}\left(7^{\prime}\right)$

Cor 3:
If K is as in example above, then $A^{n}(K)$ different for each n, so $\exists \infty$ 'ly many knots in s^{3} on which 0 -surgery yields the same 3-manifold

Proof: $K \cup K_{1} \cup K_{2}$ (∂ of pair-of-pants) is hypabolic (use Snap ply a computer program good at dealing with hyperbolic manifolds)
thus by Thurston's hyperbolic Dehn surgery theorem for large $n, A^{n}(K)$ is also hyperbolic and as $n \rightarrow \infty$ its volume increases to that of $K_{n} K_{1} \cup K_{2}$ so they are all different!

Remark: If you know about other, easier, knot invariants you migth try to show the Alexander polynomials or signatures of the $A^{n}(K)$ are different but since $S_{A^{n}(K)}^{3}(0) \cong S_{K}^{3}(0)$ one can check that their Alexander modules are the same (recall these are determined by $\pi_{1}\left(S^{3}-K\right)$ how does this relate to $\pi_{1}\left(S_{k}^{3}(0)\right)$?). So the Alerarden polynomuls and signatures are the sone.
given an annulus presentation ($A, 1$-hand) of a knot K we say it is special if

1) $A=a \pm 1$ twisted band about an unknot bounding disk D, and
2) the 1-handle is disjoint from D.
note: our example above is special
Th m 4 (Abe-Jong-Omae-Takeuch, 2013):
If K has a special anus presentation then

$$
X_{k}(0) \cong X_{A^{n}(K)}(0)
$$

for all n
the proof relies on a result of Akbulut
Lemma 5 (Akbulut, 1927):
let K, K^{\prime} be knots in ∂B^{4} with a diffeomorphism

$$
g: \partial X_{K}(n) \rightarrow \partial X_{K^{\prime}}(n)
$$

and let μ be a meridian of K. Suppose
(1) if μ is 0 -framed, then $g(\mu)$ is a O-framed unknot in the Kirby diagram representing $X_{K^{\prime}}(n)$ and
(2) the Kirby diagram $X_{K^{\prime}}(n) \cup h^{\prime}$ represents B^{4}, where h^{\prime} is the 1 -handle represented by a dotted $g(\mu)$ then g extends to a diffeomorphism $X_{k}(n) \rightarrow X_{k^{\prime}}(n)$

Proof: note: μ is the boundary of the w-core of the
2 -handle in $X_{k}(n)$
thus it bounds a disk D, the w-core of the handle recall removing a ubhd of the co-core is the same as removing the handle

$$
\text { so } X_{K}(n) \backslash \nu(D) \cong B^{4}
$$

by hypothesis $g(\mu)$ bounds a disk D^{\prime} in $X_{K^{\prime}}(n)$
and $X_{K^{\prime}}(n) \backslash V(D) \cong B^{4}$
recall, $\nu(D)=D \times D^{2}$ and this framing induces the
0 -framing on $\partial D^{2} \subset \partial X_{k}(n)$
similarly for $v\left(D^{\prime}\right)$
so a

$$
\text { nbhd }\left(\partial X_{k}(n) \cup D\right)=\left[\left(\partial X_{k}(n)\right) \times[-1,0)\right] \cup 2 \text {-handle attached }
$$ to $\mu \mathrm{m} /$ framing 0

and

$$
\text { nbhd }\left(\partial X_{K^{\prime}}(n) \cup D^{\prime}\right)=\left[\left(\partial X_{K^{\prime}}(n)\right) \times[-1,0]\right] \cup 2 \cdot \text { handle attached }
$$ to $g(\mu)$ framing

thus g can be extended to a diffeomorphism G from a neighborhood N of $\left(\partial x_{K}(n)\right) U D$ to a neighborhood N^{\prime} of $\left(\partial X_{K^{\prime}}(n)\right) \cup D^{\prime}$

now $\overline{X_{k}(n)-N} \cong B^{4}$ and $\overline{X_{k^{\prime}}(n)-N^{\prime}} \cong B^{4}$ and $\left.G\right|_{\partial\left(X_{k}(n)-\nu\right)}: \partial B^{4} \rightarrow \partial B^{4}$

Fact (Cerf 1968):
any diffeomorplism of s^{3} extends
to a diffeomorphism of B^{4}
thus G extends over B^{4} to give a diffeom.
from $X_{K}(n)$ to $X_{K^{\prime}}(n)$
Proof of The 4 :
Since K has a special annulus presentation if looks like

Now we have the mesidicin μ to K

this means
isotopy

$$
C^{0}=B^{4}
$$

so we can apply lemma 5 to see $X_{K}(0) \cong X_{A(k)}(0)$ now seriate to get $X_{K}(0) \cong X_{A^{n}(K)}(0)$
exercise: Modify above if anndus was twisting -1
What about for $n \neq 0$?
let K have a special annulus presentation we can write $A^{k}(K)$ as

(number of bands in box depends on k)
now denote by $A_{n}^{h}(K)$ the knot

Theorem 6(Abe, Song, Lueke, Osoinach 2015):
for any n and all k,

$$
X_{k}(n) \cong X_{A_{n}^{h}(k)}(n)
$$

in particular $S_{k}^{3}(n) \cong S_{A_{n}^{k}(k)}^{3}(n)$

Proof: we consular the case
and begin by showing

we rewrite the above as

performing an annulus twist on this picture gives a diffeom manifold given by

Il isotopy

so $S_{K}^{3}(n) \cong S_{A_{n}^{\prime}(K)}^{3}(n)$
can iterate construction to get result for all k
the proof that $X_{k}(n) \cong X_{A_{n}^{k}(k)}(n)$ is now exactly as in the proof of Th

Cor 7:
If K is as in example above, then $A_{n}^{k}(K)$ different for each k, so $\exists \infty$ 'ky many knots in s^{3} on which n-surgery yields the same 3-manifold and have the same n-traces

Proof: for $n=0$, this is in corollary 3 for $n \neq 0$ Abe, Song, Luke, Osoinach show that

$$
\operatorname{deg} \Delta_{\substack{A_{n}^{k+1}(k) \\ \text { Alexander poly nomicol. }}}(t)>\operatorname{deg} \Delta_{A_{n}^{k}(k)}(t)
$$

we skip the proof as it is o but far afield

B Dualizable Pattens
a pattern is an embedding $P: S^{\prime} \rightarrow V$ where $V=S^{\prime} \times D^{2}$ (we assume in $P \neq S^{\prime} \times\{p+\}$)
given a knot K in S^{3} and a framing 7 on K
\exists an embedding $I^{\prime}: V \rightarrow S^{3}$ such that
$\eta^{2}(v)=$ ubhd of K and
$z_{f}\left(S^{\prime} \times\{\rho\}\right)$ defines f for any $\rho \in \partial D^{2}$
the satellite of K by P is the knot $2_{7} \circ P: S^{\prime} \rightarrow s^{3}$ and denoted $P_{F}(K)(1 f F=0$, then ر i st $P(K))$
example:

$P(K)$ is

a pattern $P: S^{\prime} \rightarrow V=S^{\prime} \times D^{2}$ is called dualizable if $P\left(S^{\prime}\right)$ is not null-homologous and \exists a pattern $P^{*}: S^{\prime} \rightarrow V^{*}=S^{\prime} \times D^{2}$ such that Jan orientation preserving diffeomorphism

$$
f:[V-N(P(s))] \rightarrow\left[V^{*}-N\left(P^{*}\left(s^{\prime}\right)\right]\right.
$$

$T_{\text {unbid }} P\left(S^{\prime}\right)$ (n band $P^{*}\left(S^{\prime}\right)$
with $f\left(\lambda_{v}\right) \simeq \lambda_{p^{*}}, \quad \underline{f\left(\lambda_{p}\right)} \simeq \lambda_{v^{*}}, \quad f\left(\mu_{v}\right) \simeq-\mu_{p^{*}}$
is is tonic
where $\lambda_{V}=S^{\prime} \times\{\rho\} \quad p \in \partial D^{2}$
$\lambda_{p}=$ unique curve on $\partial N\left(P\left(s^{\prime}\right)\right.$) homologous to a positive multiple of λ_{V} in $V-N\left(P\left(S^{\prime}\right)\right)$

$$
\begin{aligned}
& \mu_{v}=\{q\} \times \partial D^{2} \quad \text { any } q \in S^{\prime} \\
& \mu_{p}=\text { meridian to } P\left(S^{\prime}\right) \text { on } \partial N(P)
\end{aligned}
$$

and similarly for $\lambda_{v^{*}}, \mu_{v^{*}}, \mu_{p^{*}}$
exencusé: Show if \exists an $f:[V \backslash N(P(s))] \rightarrow\left[V^{*} \backslash N\left(P^{*}\left(s^{\prime}\right)\right]\right.$ such
that $f\left(\lambda_{p}\right)=\lambda_{c} *$ and $f\left(\mu_{v}\right) \simeq-\mu_{p}$
then can isotop f so that $f\left(\lambda_{v}\right)=\lambda_{p^{*}}$ and $f\left(\mu_{p}\right)=-\mu_{v^{*}}$ What are dualizable patterns good for?

Th M 8 (Brakes 1980):
If P is a duolizable pattern with dual P^{*}, then there is a diffeomorphism $\phi: S_{p(v)}^{3}(0) \rightarrow S_{p^{*}(0)}^{3}(0)$ where U is the unknot

Proof: let $V_{p}=V-N\left(P\left(s^{\prime}\right)\right) \quad \partial V_{p}=T_{1} \cup T_{2}$ and $V_{P^{*}}^{*}=V^{*}-N\left(P^{*}\left(s^{\prime}\right)\right) \quad \partial V_{P^{*}}^{*}=T_{1}^{*} \cup T_{2}^{*}$
note: $V\left(\lambda_{V}\right) \cong S^{3} \cong V^{*}\left(\lambda_{V^{*}}\right)$
now $S_{0}^{3}(P(u))=V_{p}\left(\lambda_{P} \lambda_{v}\right)$
${ }^{r}$ Den fill T_{1} by $w /$ slope λ_{p} and T_{z} by slope λ_{V}
indeed note that since λ_{p} is homologous to some multiple of λ_{V} in V_{p}, \exists a surface $\Sigma^{\prime} \subset V_{p}$ sit. $\partial \Sigma^{\prime}=\lambda_{p} u n \lambda_{V}$
So $\Sigma=\Sigma$ 'un meidionol disks in the filling torus $S^{\prime} \times D^{2}$ for T_{2} is a Seifent surface for $P(u)$
that is λ_{p} is the O framing on $P(U)$
similarly $S_{0}^{3}\left(P^{*}(U)\right)=V_{P^{*}}^{*}\left(\lambda_{\rho}, \lambda_{V}\right)$ and we have the diffeomorphism

$$
\begin{aligned}
S_{0}^{3}(P(U))= & V_{p} u_{T_{1}} S^{1} \times D^{2} U_{T_{2}} S^{\prime} \times D^{2} \\
& \downarrow f \quad \downarrow \text { id } \quad \downarrow d \\
S_{0}^{3}\left(P^{x}(u)\right)= & V_{p^{x}}^{x} u_{T_{1}} \times S^{\prime} \times D^{2} u_{T_{2}} \times S^{\prime} \times D^{2}
\end{aligned}
$$

exercise: Use lemma 5 to show $X_{P(0)}{ }^{(0)} \cong X_{P^{*}(v)}(0)$
let $\tau_{n}: S^{\prime} \times D^{2} \rightarrow S^{\prime} \times D^{2}:(\phi,(r, \theta)) \longmapsto(\phi,(r, \theta+n \phi))$
define $\tau_{n}(P)=\tau_{n} \circ P$, this is a new patten in V
Th 9 (Miller-Piccirillo 2018):
let P be a dualizable pattern with dual P^{*}, then for any $n \in \mathbb{Z}$

$$
S_{P(\nu)}^{3}(n) \cong S_{\left(\tau_{n}(\rho)(\nu)\right.}^{3}(n)
$$

Proof: exercise. very similar to proof of π The 8 Ok great, but do dualizable patterns exist? to find them we set

$$
\Gamma: S^{\prime} \times D^{2} \rightarrow S^{\prime} \times S^{2}:(x, y) \mapsto(x, e(y))
$$

where $e: D^{2} \rightarrow S^{2}$ maps D^{2} to a ubhd of north pole

If $\alpha: S^{\prime} \rightarrow S^{\prime} \times D^{2}$ then let $2=\Gamma \cdot \alpha$
The 10 (Miller-Picirillo 2018):
a pattern P in $S^{\prime} \times D^{2}$ is dualizable $\Leftrightarrow \hat{P}$ is isotopic to $\hat{\lambda}_{V}$ in $S^{\prime} \times S^{2}$
Proof: \Rightarrow note $S^{\prime} \times S^{2} \backslash N(\hat{P})$ is diffeomorphac to $\left(S^{\prime} \times D^{2} \backslash N(\rho)\right)_{\frac{T}{2}}\left(\mu_{v}\right)$
Dem fill $a s^{\prime} \times D^{2}$ along μ_{V}
slice P is dualizable with dual P^{*}, \exists a differ. $f:(V \backslash N(P)) \rightarrow\left(V^{*} \backslash N\left(P^{*}\right)\right)$
sending μ_{v} to $-\mu_{p^{*}}$
so $\left(S^{\prime} \times D^{2} \backslash N(P)\right)_{T_{2}}\left(\mu_{v}\right)$ is diffeomorphic to $\left(S^{\prime} \times D^{2} \backslash N\left(\rho^{*}\right)\right)_{T_{1}}\left(-\mu_{p^{*}}\right)$
but this is just a solid torus
so \hat{P} is a knot in $S^{\prime} \times S^{2}$ with solid torus complement.

2e. $\partial N(\hat{P})$ is a Heegaard torus for $S^{1} \times S^{2}$
it is known (Waldhausen 1968) that $S^{\prime} \times S^{2}$ has a unique Heegaard torus so $\partial N(\hat{p})$ is isotopic to a abd of $\hat{\lambda}_{v}$ and thus \hat{p} is isotopic to $\hat{\lambda}_{p}$
\Leftrightarrow let $V^{*}=S^{\prime} \times s^{2} \backslash N(\hat{p})$
Since \hat{p} is isotopic to $\hat{\lambda}_{v} \simeq s^{\prime} \times\{p+\}$ we know that V^{*} is a solid torus so Ja deffeomorphisin of $f: V^{*} \rightarrow S^{1} \times D^{2}$ such that

$$
f\left(\hat{\lambda}_{p}\right)=s^{\prime} x\{p t\}=\lambda_{v^{*}}
$$

note: $T: S^{\prime} \times S^{2} \rightarrow S^{\prime} \times S^{2}:(\theta, x) \longmapsto\left(\theta, r_{\theta}(x)\right)$, where $r_{0}: S^{2} \rightarrow S^{2}$ rotates s^{2} by θ, changes framing on $\hat{\lambda}_{p}$
let $Q=\hat{\lambda}_{V} \subset V^{*}$ and $Z=\left(S^{\prime} \times S^{2}\right) \backslash N\left(\hat{P} \cup \hat{\lambda}_{p}\right)$
note: $V \backslash N(P) \cong Z \cong V^{*} \backslash N\left(\hat{\lambda}_{v}\right)$
in the "trivial case" we see $\quad \mu_{v} \leftrightarrow-\mu_{Q}$ and

this is true ingeneral (see example below)
so P is dualizable with $P^{*}=f(Q) \subset S^{\prime} \times D^{2}$

is dualizable

We now see the dual of P is $\tau_{-4}(P)$
to do this we draw $\hat{\lambda}_{v}$ and \hat{p} together with $\hat{\lambda}_{p}$ (the framing on P) (dropping outh s^{2} from the picture)

So O-surgery on

and on

are diffeomorphic!
exercise:
If P is dualizable with dual P^{*}, then $\tau_{n}(P)$ is dualizable with dual $\tau_{-n}\left(\rho^{*}\right)$
(so for P the pattern above $\tau_{n}(P)$ has dual $\tau_{-4-n}(P)$)
2 knots K_{0}, K_{1} are called concordant if there is an embedded andes $A \subset S^{3} x[0,1]$ st. $A \cap S^{3} \times\{i\}=K_{i} \quad \tau=0,1$

Akbulut-Kirby conjectured that if $S_{K}^{3}(0) \cong S_{K^{\prime}}^{3}(0)$ then K and K 'are concordant

Thㅡㅡㄴ (Miller-Piccirillo 2018):
\exists infinitely many pairs $K_{1} K^{\prime}$ that are not concordant but $S_{K}^{3}(0) \cong S_{K^{\prime}}^{3}(0)$

Proof: given a knot $K \subset s^{3}$
let $\Sigma_{2}(k)$ be the 2 -fold coven of s^{3} branched over K
that is consider the 2 -fold cover of S_{k}^{3} corresponding to the subgroup $\operatorname{ken}\left(\pi_{c}\left(S_{k}^{3}\right) \rightarrow H_{c}\left(S_{k}^{3}\right) \rightarrow \mathbb{Z} / 2\right)$
then glue in a solid torus so that its menidiai goes to the lift to the menidion of k

exercise: If $K_{1} K^{\prime}$ are concordant, then \exists a compact 4 -manifold
X st. $\partial X=-\Sigma_{2}(K) \cup \Sigma_{2}\left(K^{\prime}\right)$ and
$H_{*}\left(X_{1}-\Sigma_{2}(k)\right) \cong H_{*}\left(x, \Sigma_{2}\left(k^{\prime}\right) \cong 0 \quad\right.$ (X called homology cobordism)
let $K_{n}=\left(\tau_{2 k-1} J\right)(U)$ and $K_{n}{ }^{\prime}=\left(\tau_{-3-2 k} J\right)(u)$
where J is as above
from $T h \underline{m} 8$ we know $S_{k_{1}}^{3}(0) \cong S_{k_{n}^{\prime}}^{3}(0)$
to show K_{n} is not wo cordant to K_{n}^{\prime} Mitla and Piciirillo
compute $O z$ swath and Szabo's d-invariants
one can show $H_{x}\left(\Sigma_{2}\left(K_{n}\right)\right) \cong H_{*}\left(\Sigma_{2}\left(K_{n}^{\prime}\right)\right) \cong H_{*}\left(S^{3}\right)$
so the d-invariont of $\Sigma_{2}\left(K_{n}\right)$ and $\Sigma_{2}\left(K_{n}^{\prime}\right)$
is a rational number and it is known that is two homology spheres are hand logy cobordant then their d-invariants are the some
M_{1} llen-Picicirillo computed $d\left(\Sigma_{2}\left(K_{n}^{\prime}\right)\right) \leq-2<0 \leq d\left(\Sigma_{2}\left(K_{n}\right)\right)$ see their papen

If $Q: S^{\prime} \rightarrow V$ is a pattern, then let $J_{Q}: S^{\prime} \times D^{2} \rightarrow V$ parametrize a mhd $N\left(Q\left(s^{\prime}\right) \text { such that }\right)_{Q}\left(S^{\prime} \times\{p\}\right) \simeq \lambda_{Q}$
given another patten $P: S^{\prime} \rightarrow V \cong s^{\prime} \times D^{2}$ define the composition

$$
P \circ Q=J_{Q} \circ P
$$

Th ${ }^{m} / 2: ~$
If P and Q are dualizable, with duals P^{*} and Q^{*}, then $P \circ Q$ is dualizable with dual $Q^{*} \circ P^{*}$

Proof: we denote the solid torus in which a pattern R lives by V_{R} note: $V_{P \circ Q} \backslash N(P \circ Q)=\left(V_{Q} \backslash N(Q)\right) u_{\sim}\left(V_{P} \backslash \nu(P)\right)$
where $\lambda_{V_{P}}$ is identified with λ_{Q} and $\mu_{v_{p}} " \quad " \mu_{Q}$
since P and Q are dualizable, we see

$$
V_{Q \circ P} \backslash N\left(Q_{0} P\right) \cong\left(V_{p^{*}} \backslash N\left(P^{*}\right)\right) u_{\sim}\left(V_{Q^{*}} \backslash N\left(Q^{*}\right)\right)
$$

where $\lambda_{P^{*}}$ is identified with $\lambda_{V_{Q}^{*}}$ and $\mu_{p^{*}}$ with $-\mu_{V_{Q}^{*}}$
but this is exactly $V_{Q^{*} \circ P^{*}} \backslash N\left(Q^{*} \circ P^{*}\right)$
exercise: check differ sends $\lambda_{V_{p_{0} Q}}$ to $\lambda_{Q^{*} p^{*}}$ and

$$
\mu_{P_{0 Q}} \text { to }-\mu_{V_{Q^{*} 0 P^{*}}}
$$

exeruse: given $K \subset S^{3}$ we can get a pattern P_{k}

1) show $P_{K}\left(K^{\prime}\right)=K \# K^{\prime}$
2) show P_{K} is dualizable with dual P_{K}

Cor 13:
If P is a dualizable pattern and K a knot in S_{1}^{3}
then $S_{P(K)}^{3}(0) \cong S_{P}^{3}$

Proof: Since $P_{k}(u)=K$ we see $P_{\circ} P_{k}(u)=P(k)$

$$
\text { now }\left(P_{\circ} P_{k}\right)^{*}=P_{k} \circ P^{*} \text { so } P_{k} \circ P^{*}(u)=k \# P^{*}(u)
$$

the result follows from $T^{m}{ }^{m} 8$
Th m 14 (Miller-Piccirillo 2018) \qquad
let K admit a special annulus presentation, and K ' be obtained by an annulus twist Then there is a dualizable pattern P such
that $P(U) \cong K^{\prime}$ and $P^{*}(U) \cong K$
Proof: recall K^{\prime} looks like

let $V=\overline{S^{3}-\operatorname{nbhd}(\beta)}$ and $P=K^{\prime} \subset V$
to see P is duclizable we use $T_{n}{ }^{m} 10$ and see $\hat{P} \subset S^{1} \times s^{2}$ is is otopic to $S^{\prime} \times$ Pets
$\hat{P} \operatorname{cs}^{1} \times s^{2}$ is shown in the figure above if we do zoo surgery on β

so P is dualizable with some dual P^{*} now to see what P^{*} is consider the home $g: S_{k}^{3}(0) \rightarrow S_{K^{\prime}}^{3}(0)$

so $S^{3} \backslash N(K) \cong S_{K}^{3}(0) \backslash N(\alpha) \cong S_{K^{\prime}}^{3}(0) \backslash N(\beta)$
now $S_{k^{\prime}}^{3}(0) \backslash N(\beta)$ is the result of filing $(V \backslash N(P))$ along λ_{p} which (by def ${ }^{n}$) is homeomorphic $\left(\left.V^{*} \backslash N\left(p^{*}\right)\right|_{T_{2}}\left(\lambda_{V^{*}}\right)\right.$ which in turn is $S^{3} \backslash N\left(P^{*}(0)\right)$
but Gordon-Luecke showed a knot is determined by its complement, so K isotopic to $P^{*}(u)$
C. RGB Links
an $R G B$ link is a 3-component link whose components are written R, G, B
such that 1) $B \cup R$ is isotopic to $B \cup \mu_{B}{ }^{6}$ meridian to B
2) $G \cup R$ is isotopic to $G \cup \mu_{G}$ cmaidion to G
3) $\mathrm{lk}(B, G)=0$
example:

by property I) if we attach a 1-handle to B^{4} by putting a dot on R and attach a 0 -framed 2 -handle to B we get B^{4} the link G becomes a knot K_{G} in S^{3}

do 3 indicated handle slides and cancel red and blue

by property 2) we also get K_{B} in s^{3}

do 3 indicated handle slides and cancel red and green

by property 3) the 0 -framing on B and G goes to the 0 -framing on K_{B} and K_{G}
this proves
Th -15 (Piccirillo 2019):

$$
X_{K_{G}}{ }^{(0)} \cong X_{K_{B}}{ }^{(0)}
$$

exercise: Show if you attach 2 -handles to G, B with framing O and n respectively, and dot red, then you get K_{G}^{n} and K_{B}^{n} st.

$$
X_{K_{G}^{n}}(n) \cong X_{K_{B}^{n}}(n)
$$

Thḿ6 (Piccirillo 2019):
If P is a dualizable pattern and P^{*} is its dual then \exists on $R G B$ link $S t: P(0) \simeq K_{B}$ and $P^{*}(0) \simeq K_{G}$

Proof: suppose P is

now $P(0)$ is

but $\partial(O)=s^{\prime} \times s^{2}$ so by Th T_{10}

and $P^{*}(0)$ is

Given on RGB link, then Ja dualizable pattern P with dual P^{*}
such that $K_{G} \simeq P(0)$ and $K_{B} \simeq P^{*}(u)$
Proof: Gwen RBG link, put a dot on R and shade B "over" R until it is an unknot suppose this took r slides (counted with sian) so framings on B change by Zr

slide B oven $R(-r)$ times to get change in framing to be 0 note B and R bound disks if σ intasects B's disk slide it "oren" red to get

now G is in the form of $P(U)$ one can do the same to get $B=P^{*}(u)$

